The rRNA-processing function of the yeast U14 small nucleolar RNA can be rescued by a conserved RNA helicase-like protein.

نویسندگان

  • W Q Liang
  • J A Clark
  • M J Fournier
چکیده

The phylogenetically conserved U14 small nucleolar RNA is required for processing of rRNA, and this function involves base pairing with conserved complementary sequences in 18S RNA. With a view to identifying other important U14 interactions, a stem-loop domain required for activity of Saccharomyces cerevisiae U14 RNAs (the Y domain) was first subjected to detailed mutational analysis. The mapping results showed that most nucleotides of the Y domain can be replaced without affecting function, except for loop nucleotides conserved among five different yeast species. Defective variants were then used to identify both intragenic and extragenic suppressor mutations. All of the intragenic mutations mapped within six nucleotides of the primary mutation, suggesting that suppression involves a change in conformation and that the loop element is involved in an essential intermolecular interaction rather than intramolecular base pairing. A high-copy extragenic suppressor gene, designated DBP4 (DEAD box protein 4), encodes an essential, putative RNA helicase of the DEAD-DEXH box family. Suppression by DBP4 (initially CA4 [T.-H. Chang, J. Arenas, and J. Abelson, Proc. Natl. Acad. Sci. USA 87:1571-1575, 1990]) restores the level of 18S rRNA and is specific for the Y domain but is not allele specific. DBP4 is predicted to function either in assembly of the U14 small nucleolar RNP or, more likely, in its interaction with other components of the rRNA processing apparatus. Mediating the interaction of U14 with precursor 18S RNA is an especially attractive possibility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The helicase Has1p is required for snoRNA release from pre-rRNA.

Synthesis of rRNA in eukaryotes involves the action of a large population of snoRNA-protein complexes (snoRNPs), which create modified nucleotides and participate in cleavage of pre-rRNA. The snoRNPs mediate these functions through direct base pairing, in many cases through long complementary sequences. This feature suggests that RNA helicases may be involved in the binding and release of snoRN...

متن کامل

An essential domain in Saccharomyces cerevisiae U14 snoRNA is absent in vertebrates, but conserved in other yeasts.

U14 is a small nucleolar RNA (snoRNA) required for early cleavages of eukaryotic precursor rRNA. The U14 RNA from Saccharomyces cerevisiae is distinguished from its vertebrate homologues by the presence of a stem-loop domain that is essential for function. This element, known as the Y-domain, is located in the U14 sequence between two universal sequences that base pair with 18S rRNA. Sequence d...

متن کامل

Association of Yeast RNA Polymerase I with a Nucleolar Substructure Active in Rrna Synthesis and Processing

A novel ribonucleoprotein complex enriched in nucleolar proteins was purified from yeast extracts and constituents were identified by mass spectrometry. When isolated from rapidly growing cells, the assembly contained ribonucleic acid (RNA) polymerase (pol) I, and some of its transcription factors like TATA-binding protein (TBP), Rrn3p, Rrn5p, Rrn7p, and Reb1p along with rRNA processing factors...

متن کامل

Quantitative analysis of snoRNA association with pre-ribosomes and release of snR30 by Rok1 helicase

In yeast, three small nucleolar RNAs (snoRNAs) are essential for the processing of pre-ribosomal RNA--U3, U14 and snR30--whereas 72 non-essential snoRNAs direct site-specific modification of pre-rRNA. We applied a quantitative screen for alterations in the pre-ribosome association to all 75 yeast snoRNAs in strains depleted of eight putative helicases implicated in 40S subunit synthesis. For th...

متن کامل

Characterization and mutational analysis of yeast Dbp8p, a putative RNA helicase involved in ribosome biogenesis.

RNA helicases of the DEAD box family are involved in almost all cellular processes involving RNA molecules. Here we describe functional characterization of the yeast RNA helicase Dbp8p (YHR169w). Our results show that Dbp8p is an essential nucleolar protein required for biogenesis of the small ribosomal subunit. In vivo depletion of Dbp8p resulted in a ribosomal subunit imbalance due to a defic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 17 7  شماره 

صفحات  -

تاریخ انتشار 1997